2AgNO3(aq) + NiCl2(aq) ==> Ni(NO3)2(aq) + 2AgCl(s) Molecular The beaker on the left side of the figure is called a half-cell, and contains a 1 M solution of copper(II) nitrate [Cu(NO3)2] with a piece of copper metal partially submerged in the solution. To balance a chemical equation, enter an equation of a chemical reaction and press the Balance button. \nonumber \]. This unbalanced equation has the general form of an exchange reaction: \[ \overbrace{\ce{AC}}^{\text{soluble}} + \overbrace{\ce{BD}}^{\text{soluble}} \rightarrow \underbrace{\ce{AD}}_{\text{insoluble}} + \overbrace{\ce{BC}}^{\text{soluble}} \label{4.2.2} \]. The salt bridge is represented by a double line, . For charge to be conserved, the sum of the charges of the ions multiplied by their coefficients must be the same on both sides of the equation. Write the balanced equation for this Connecting the copper electrode to the zinc electrode allows an electric current to flow. \nonumber \]. 1) Select the net ionic equation for the reaction that occurs when sodium hydroxide and nickel(II) nitrate are mixed. \[\ce{3AgF(aq) + Na_3PO_4(aq) \rightarrow Ag_3PO_4(s) + 3NaF(aq) } \nonumber \], \[\ce{3Ag^+(aq) + 3F^{-}(aq) + 3Na^{+}(aq) + PO_4^{3-}(aq) \rightarrow Ag_3PO_4(s) + 3Na^{+}(aq) + 3F^{-}(aq) } \nonumber \], \[\ce{3Ag^{+}(aq) + PO_4^{3-}(aq) \rightarrow Ag_3PO_4(s)} \nonumber \]. The anode is connected to the cathode in the other half-cell, often shown on the right side in a figure. Consider what happens when a clean piece of copper metal is placed in a solution of silver nitrate (Figure \(\PageIndex{1}\)). The reaction may be summarized as, \[\begin{align} Legal. The copper metal is an electrode. &\textrm{overall: }\ce{2Ag+}(aq)+\ce{Cu}(s)\ce{2Ag}(s)+\ce{Cu^2+}(aq) At the same time, the nitrate ions are moving to the left, sodium ions (cations) move to the right, through the porous plug, and into the silver nitrate solution on the right. As this is a double replacement reaction, predict the products by exchanging the cations and anions of the reactants. The cathode? In Equation \(\ref{1}\) the silver ion, Ag+, is the oxidizing agent. b. The half-cell on the right side of the figure consists of the silver electrode in a 1 M solution of silver nitrate (AgNO3). Nothing could be further from the truth: an infinite number of chemical reactions is possible, and neither you nor anyone else could possibly memorize them all. Some oxidation-reduction reactions involve species that are poor conductors of electricity, and so an electrode is used that does not participate in the reactions. To find out what is actually occurring in solution, it is more informative to write the reaction as a complete ionic equation showing which ions and molecules are hydrated and which are present in other forms and phases: \[\ce{2Ag^{+}(aq) + 2NO_3^{-} (aq) + 2K^{+}(aq) + Cr_2O_7^{2-}(aq) \rightarrow Ag_2Cr_2O_7(s) + 2K^{+}(aq) + 2NO_3^{-}(aq)}\label{4.2.2a} \]. Just as important as predicting the product of a reaction is knowing when a chemical reaction will not occur. Molecular weight AgNO3 = 108+14+3*16=170(g/mol) Electrons flow from the anode to the cathode: left to right in the standard galvanic cell in the figure. Consequently the half-equation, \[\ce{2Ag^+ + 2e^{-} -> 2Ag} \nonumber \]. c. What is the standard cell potential for this reaction? 5: Introduction to Solutions and Aqueous Reactions, { "5.01:_Molecular_Gastronomy" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.02:_Solution_Concentration_and_Solution_Stoichiomentry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.03:_Solution_Stoichiometry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.04:_Types_of_Aqueous_Solutions_and_Solubility" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.05:_Precipitation_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.06:_Representing_Aqueous_Reactions-_Molecular_Ionic_and_Complete_Ionic_Equations" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.07:_Acid-Base_and_Gas-Evolution_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.08:_Gas_Evolution_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.09:_Oxidation-Reduction_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, { "00:_Front_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "01:_Matter_Measurement_and_Problem_Solving" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "02:_Atoms_and_Elements" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "03:_Molecules_Compounds_and_Chemical_Equations" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "04:_Chemical_Reactions_and_Quantities" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "05:_Introduction_to_Solutions_and_Aqueous_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "06:_Gases" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "07:_The_Quantum-Mechanical_Model_of_the_Atom" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "08:_Thermochemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "09:_Periodic_Properties_of_the_Elements" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "10:_Chemical_Bonding_I-_Lewis_Structures" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11:_Chemical_Bonding_II-_Valance_Bond_Theory_and_Molecular_Orbital_Theory" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "12:_Liquids_Solids_and_Intermolecular_Forces" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "13:_Solids_and_Modern_Materials" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "14:_Solutions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "15:_Chemical_Kinetics" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "16:_Chemical_Equilibrium" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "17:_Acids_and_Bases" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "18:_Aqueous_Ionic_Equilibrium" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "19:_Gibbs_Energy_and_Thermodynamics" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "20:_Electrochemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "21:_Radioactivity_and_Nuclear_Chemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "22:_Organic_Chemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "23:_Biochemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "24:_Chemistry_of_the_Nonmetals" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "25:_Metals_and_Metallurgy" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "26:_Transition_Metals_and_Coordination_Compounds" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "zz:_Back_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, [ "article:topic", "showtoc:yes", "license:ccbyncsa", "transcluded:yes", "source-chem-37988", "licenseversion:40" ], https://chem.libretexts.org/@app/auth/3/login?returnto=https%3A%2F%2Fchem.libretexts.org%2FCourses%2Fcan%2Fgeneral%2F05%253A_Introduction_to_Solutions_and_Aqueous_Reactions%2F5.05%253A_Precipitation_Reactions, \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\), Example \(\PageIndex{1}\): Balancing Precipitation Equations, Exercise \(\PageIndex{1}\): Mixing Silver Fluoride with Sodium Phosphate, 5.4: Types of Aqueous Solutions and Solubility, 5.6: Representing Aqueous Reactions- Molecular, Ionic, and Complete Ionic Equations, Determining the Products for Precipitation Reactions, YouTube(opens in new window), Predicting the Solubility of Ionic Compounds, YouTube(opens in new window), most salts that contain an alkali metal (Li, most salts of anions derived from monocarboxylic acids (e.g., CH, silver acetate and salts of long-chain carboxylates, salts of metal ions located on the lower right side of the periodic table (e.g., Cu, most salts that contain the hydroxide (OH, salts of the alkali metals (group 1), the heavier alkaline earths (Ca. 2AgNO3 + Ni (arrow) 2Ag +Ni(NO3)2 Be sure to specify states such as (aq) or (s). From the information given in the problem: \[\ce{Zn}(s)\ce{Zn^2+}(aq)\ce{Cu^2+}(aq)\ce{Cu}(s) \nonumber. Examples: Fe, Au, Co, Br, C, O, N, F. Ionic charges are not yet supported and will be ignored. If you have 22.9 g of Ni and 112 f of AgNO3, which reactant is in excess? The electrode in the left half-cell is the anode because oxidation occurs here. concentrations of [AgNO3] = 0.100 M and [Ni(NO3)2] = 0.300 M. Without the salt bridge, the compartments would not remain electrically neutral and no significant current would flow. Silver bromide and nickel (II)nitrate are the expected products. Write the oxidation and reduction half-reactions and write the reaction using cell notation. Half-reactions separate the oxidation from the reduction, so each can be considered individually. A simple redox reaction occurs when copper metal is immersed in a solution of silver nitrate. Nickel chloride silver nitrate molecular ionic and net ionic? The most important step in analyzing an unknown reaction is to write down all the specieswhether molecules or dissociated ionsthat are actually present in the solution (not forgetting the solvent itself) so that you can assess which species are most likely to react with one another. Because both components of each compound change partners, such reactions are sometimes called double-displacement reactions. When this is exposed to light or any organic material, this becomes black in color. What are the qualities of an accurate map? The products of the reaction are nickel nitrate and silver chloride (insoluble). Probably one can write the balanced chemical equation for the reaction is Pb (NO3)2 + NiCl2 View the full answer Transcribed image text: Does a reaction occur when aqueous solutions of lead (II) nitrate and nickel (II) chloride are combined? Chemistry questions and answers. (a) Calculate the cell potential, assuming standard conditions. Not oxidized by air under ordinary conditions. 7. The overall chemical equation for the reaction shows each reactant and product as undissociated, electrically neutral compounds: 2AgNO3(aq) + K2Cr2O7(aq) Ag2Cr2O7(s) + 2KNO3(aq) \end{align} \nonumber \]. The following video shows an example of this oxidation occurring. Mixing the two solutions initially gives an aqueous solution that contains Ba2+, Cl, Li+, and SO42 ions. Aqueous solutions of strontium bromide and aluminum nitrate are mixed. b. nitric oxide). Draw a cell diagram for this reaction. This page titled Characteristic Reactions of Nickel Ions (Ni) is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by James P. Birk. Species which accept electrons in a redox reaction are called oxidizing agents, or oxidants. The reaction was stopped before all the nickel reacted, and 39.5 g of solid metal (nickel and silver) is present. Write the overall chemical equation, the complete ionic equation, and the net ionic equation for the reaction of aqueous barium nitrate with aqueous sodium phosphate to give solid barium phosphate and a solution of sodium nitrate. Oxidation occurs at the anode. Draw a cell diagram for this reaction. Answered over 90d ago. Identify each half-equation as an oxidation or a reduction. Video \(\PageIndex{1}\): Mixing Potassium Chromate and Silver Nitrate together to initiate a precipitation reaction (Equation \(\ref{4.2.1}\)). molecular: NiCl2 + 2AgNO3 ---> 2AgCl(s) + Ni(NO3)2, ionic: Ni2+ + 2Cl- + 2Ag+ + 2NO3 ---> 2AgCl(s) + Ni2+ + Silver Nitrate when heated decomposes and forms, Silver, Nitrogen dioxide and Oxygen. Reaction Information Word Equation Nickel (Ii) Chloride + Silver Nitrate = Nickel (Ii) Nitrate + Silver Chloride One mole of aqueous Nickel (Ii) Chloride [NiCl2] and two moles of aqueous Silver Nitrate [AgNO3] react to form one mole of aqueous Nickel (Ii) Nitrate [Ni (NO3)2] and two moles of solid Silver Chloride [AgCl] Galvanic or voltaic cells involve spontaneous electrochemical reactions in which the half-reactions are separated (Figure \(\PageIndex{2}\)) so that current can flow through an external wire. Since zinc metal (Zn) has donated electrons, we can identify it as the reducing agent. Write all the soluble reactants and products in their dissociated form to give the complete ionic equation; then cancel species that appear on both sides of the complete ionic equation to give the net ionic equation. We also acknowledge previous National Science Foundation support under grant numbers 1246120, 1525057, and 1413739. At this point, no current flowsthat is, no significant movement of electrons through the wire occurs because the circuit is open. Legal. Who makes the plaid blue coat Jesse stone wears in Sea Change? Aqueous ammonia precipitates green gelatinous Ni(OH)2: The nickel(II) hydroxide precipitate dissolves in excess ammonia to form a blue complex ion: Sodium hydroxide also precipitates nickel(II) hydroxide: Nickel(II) hydroxide does not dissolve in excess \(\ce{NaOH}\). Where are Pisa and Boston in relation to the moon when they have high tides? When these solutions are mixed, the only effect is to dilute each solution with the other (Figure \(\PageIndex{1}\)). What mass of SO2 can be made from 25.0 g of Na2SO3 and 22.0 g of HCl? Although Equation \(\ref{4.2.1a}\) gives the identity of the reactants and the products, it does not show the identities of the actual species in solution. The volt is the derived SI unit for electrical potential, \[\mathrm{volt=\mathit{V}=\dfrac{J}{C}} \nonumber \]. In the sections that follow, we discuss three of the most important kinds of reactions that occur in aqueous solutions: precipitation reactions (also known as exchange reactions), acidbase reactions, and oxidationreduction reactions. Silver nitrate reacts with nickel metal to produce silver metal and nickel (II) nitrate. Sodium reacts vigorously with water to produce aqueous sodium hydroxide and hydrogen (see figure below). The reaction was stopped before all the nickel reacted, and 36.5 g of solid metal (nickel and silver) is present. Note that volts must be multiplied by the charge in coulombs (C) to obtain the energy in joules (J). Conversely, since iron(III) ion (Fe3+) has accepted electrons, we identify it as the oxidizing agent. Canceling the spectator ions gives the net ionic equation, which shows only those species that participate in the chemical reaction: \[2Ag^+(aq) + Cr_2O_7^{2-}(aq) \rightarrow Ag_2Cr_2O_7(s)\label{4.2.3} \]. Chemistry. What is wrong with reporter Susan Raff's arm on WFSB news? In this equation, A is the current in amperes and C the charge in coulombs. Refer to Table \(\PageIndex{1}\) to determine which, if any, of the products is insoluble and will therefore form a precipitate. I'm sure this is often requested o. Use your graphing calculator's rref() function (or an online rref calculator) to convert the following matrix into reduced row-echelon-form: Simplify the result to get the lowest, whole integer values. This keeps the beaker on the left electrically neutral by neutralizing the charge on the copper(II) ions that are produced in the solution as the copper metal is oxidized. You can also ask for help in our chat or forums. While full chemical equations show the identities of the reactants and the products and give the stoichiometries of the reactions, they are less effective at describing what is actually occurring in solution. (1 4 | 7 +/- 2 5 8 : 3 6 9 0 x 100 The cell potential, +0.46 V, in this case, results from the inherent differences in the nature of the materials used to make the two half-cells. Students tend to think that this means they are supposed to just know what will happen when two substances are mixed. Solution B: 0.2 M nickel (II) nitrate, green. Did Billy Graham speak to Marilyn Monroe about Jesus? As you will see in the following sections, none of these species reacts with any of the others. { "11.01:_Prelude_to_Aqueous_Phase_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.02:_Ions_in_Solution_(Electrolytes)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.03:_Precipitation_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.04:_Hydration_of_Ions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.05:_Hydrogen_and_Hydroxide_Ions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.06:_Acid-Base_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.07:_Acids" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.08:_Bases" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.09:_Strong_Acids_and_Bases" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.10:_Weak_Acids" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.11:_Weak_Bases" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.12:_Amphiprotic_Species" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.13:_Conjugate_Acid-Base_Pairs" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.14:_Lewis_Acids_and_Bases" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.15:_Redox_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.16:_Oxidation_Numbers_and_Redox_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.17:_Balancing_Redox_Equations" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.18:_Common_Oxidizing_Agents" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.19:_Common_Reducing_Agents" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.20:_Substances_Which_Are_Both_Oxidizing_and_Reducing_Agents" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.21:_Redox_Couples" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, { "00:_Front_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "01:_Introduction_-_The_Ambit_of_Chemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "02:_Atoms_Molecules_and_Chemical_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "03:_Using_Chemical_Equations_in_Calculations" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "04:_The_Structure_of_Atoms" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "05:_The_Electronic_Structure_of_Atoms" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "06:_Chemical_Bonding_-_Electron_Pairs_and_Octets" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "07:_Further_Aspects_of_Covalent_Bonding" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "08:_Properties_of_Organic_Compounds" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "09:_Gases" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "10:_Solids_Liquids_and_Solutions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11:_Reactions_in_Aqueous_Solutions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "12:_Chemistry_of_the_Representative_Elements" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "13:_Chemical_Equilibrium" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "14:_Ionic_Equilibria_in_Aqueous_Solutions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "15:_Thermodynamics-_Atoms_Molecules_and_Energy" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "16:_Entropy_and_Spontaneous_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "17:_Electrochemical_Cells" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "18:_Chemical_Kinetics" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "19:_Nuclear_Chemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "20:_Molecules_in_Living_Systems" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "21:_Spectra_and_Structure_of_Atoms_and_Molecules" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "22:_Metals" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "zz:_Back_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, [ "article:topic", "reducing sugar", "redox reaction", "redox", "reductant", "oxidizing agent", "oxidant", "Oxidation-Reduction Reaction", "authorname:chemprime", "showtoc:no", "license:ccbyncsa", "licenseversion:40" ], https://chem.libretexts.org/@app/auth/3/login?returnto=https%3A%2F%2Fchem.libretexts.org%2FBookshelves%2FGeneral_Chemistry%2FBook%253A_ChemPRIME_(Moore_et_al.